

СИСТЕМА ДОБРОВОЛЬНОЙ СЕРТИФИКАЦИИ «МФЦС»

Зарегистрирована в едином реестре добровольной сертификации Федерального агентства по техническому регулированию и метрологии Российской Федерации (Росстандарт РФ) МФЦС.003RU.Я2331.04ПВК0

УТВЕРЖДАЮ

Руководитель

Испытательной лаборатории

ООО «Многопрофильный

Мосолов П.С.

ПРОТОКОЛ ИСПЫТАНИЙ

№ 2953/0823 от «28» августа 2023

Место проведения испытаний:	ИЛ ООО «Многопрофильный центр качества»			
Заявитель:	ООО «Вектор-Инжиниринг»			
	Адрес: Республика Беларусь, 220033, город Минск, пр-т Партизанский, 8/2-			
	5			
Наименование продукции:	Блочная комплектная трансформаторная подстанция БКТП мощностью от			
	250 до 2500 кВА на номинальное напряжение 6-10/0,4кВ			
Изготовитель:	ООО «Вектор-Инжиниринг» Адрес: Республика Беларусь, 220033, город			
	Минск, пр-т Партизанский, 8/2-5			
Цель испытаний	подтверждение на соответствие требованиям ГОСТ 30546.1-98 «Общие			
	требования к машинам, приборам и другим техни-ческим изделиям и			
	методы расчета их сложных конструкций в части сейсмо-стойкости», ГОСТ			
	30546.2-98 «Испытания на сейсмостой-кость машин, при-боров и других			
	технических изделий», ГОСТ 30546.3-98 «Методы определе-ния			
	сейсмостойкости машин, приборов и других технических изделий, уста-			
	новленных на месте эксплуатации, при их аттестации или сертификации на			
	сейсмическую безопасность».			
Методы испытаний:	ГОСТ 30546.1-98 «Общие требования к машинам, приборам и другим			
	техническим изделиям и методы расчета их сложных конструкций в части			
	сейсмостойкости», ГОСТ 30546.2-98 «Испытания на сейсмостойкость			
	машин, приборов и других технических изделий», ГОСТ 30546.3-98			
	«Методы определения сейсмостойкости машин, приборов и других			
	технических изделий, установленных на месте эксплуатации, при их			
	аттестации или сертификации на сейсмическую безопасность».			

Результаты испытаний приведены на 15 страницах

1 ОБЩИЕ СВЕДЕНИЯ

Испытание на сейсмическое воздействие на блочную комплектную трансформаторную подстанцию БКТП мощностью от 250 до 2500 кВА на номинальное напряжение 6-10/0,4кВ (далее – «изделие»). Расчет выполнен на основании технической документации, ГОСТ 30546.1-98 «Общие требования к машинам, приборам и другим техническим изделиям и методы расчета их сложных конструкций в части сейсмостойкости», ГОСТ 30546.2-98 «Испытания на сейсмостойкость машин, приборов и других технических изделий», ГОСТ 30546.3-98 «Методы определения сейсмостойкости машин, приборов и других технических изделий, установленных на месте эксплуатации, при их аттестации или сертификации на сейсмическую безопасность».

Рис. 1. Общий вид.

2 НАГРУЗКИ И ВОЗДЕЙСТВИЯ, ДЕЙСТВУЮЩИЕ НА ИЗДЕЛИЕ

На основании технической документации рис. 1, была построена модель рис. 3.

В качестве статических и динамических нагрузок были приняты следующие типы нагрузок:

- 1. собственный вес с коэффициентом 1.05;
- 2. сейсмическое воздействие в 9 баллов по шкале MSK-64 на высоте 70 метров над нулевой отметкой.

3 МЕТОДИКА РАСЧЕТА

ANSYS — универсальная программная система конечно-элементного (МКЭ) анализа. ANSYS аттестован в ГОСАТОМНАДЗОРЕ России (Регистрационный номер ПС в ЦОЭП при РНЦ КИ №490 от 10.09.2002); (Регистрационный номер паспорта аттестации ПС №145 от 31.10.2002), а также выдано свидетельство РААСН о верификации ANSYS № 02/ANSYS/2009.

Расчет, выполняемый программой ANSYS, основан на классических инженерных представлениях и концепциях. При помощи численных методов эти концепции могут быть сформулированы в виде матричных уравнений, которые наиболее пригодны для конечно-элементных приложений. Настоящий расчёт является консультационным.

Совокупность дискретных областей (элементов), связанных между собой в конечном числе точек (узлов), представляет собой математическую модель системы, поведение которой нужно анализировать. Основными неизвестными являются степени свободы узлов конечно-элементной модели. К степеням свободы относятся перемещения, повороты, температуры, давления, скорости, потенциалы электрических или магнитных полей; их конкретное содержание определяется типом элемента, который связан с данным узлом. В соответствии со степенями свободы для каждого элемента модели формируются матрицы масс, жесткости (или теплопроводности) и сопротивления (или удельной теплоемкости). Эти матрицы приводят к системам совместных уравнений, которые обрабатываются так называемыми "решателями".

Для материалов с линейными свойствами напряжения связаны с деформациями соотношением:

$$\{\sigma\} = [D] \{\epsilon el\},\tag{1}$$

где $\{\sigma\} = \lfloor \sigma x \ \sigma y \ \sigma z \ \sigma xy \ \sigma yz \ \sigma xz \rfloor T$ - вектор напряжений (как выходная величина помечается меткой S);

[D] — матрица упругости (описывается уравнениями (18) ... (23), обратная матрица записывается в виде (4) и (5);

 $\{\varepsilon el\} = \{\varepsilon\} - \{\varepsilon th\}$ - выходной массив;

 $\{\varepsilon\} = \lfloor \varepsilon x \ \varepsilon y \ \varepsilon z \ \varepsilon xy \ \varepsilon xz \ \varepsilon yz \rfloor T$ - вектор полной (суммарной) деформации;

{eth} – вектор температурной деформации (определяется соотношением (3).

Компоненты вектора напряжений показаны на Рис. 2. Для используемых в программе ANSYS напряжений и деформаций принято следующее правило знаков: величины, относящиеся к растяжению, являются положительными, к сжатию - отрицательными.

Компоненты сдвига считаются положительными, если их направления совпадают с направлениями соответствующих координатных осей. Деформации сдвига представляют собой инженерные деформации, а не компоненты тензора.

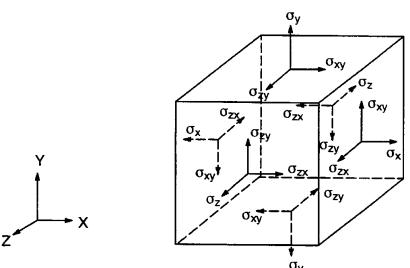


Рис. 2. Компоненты вектора напряжений

Уравнение (1) может быть обращено следующим образом:

$$\{\varepsilon\} = \{\varepsilon th\} + [D] - 1\{\sigma\}. \tag{2}$$

Для трехмерного случая вектор температурных деформаций определяется в виде соотношения: $\{ \epsilon th \} = \Delta T \lfloor \alpha x \ \alpha y \ \alpha z \ 0 \ 0 \ 0 \rfloor T,$ (3)

Настоящий протокол испытаний распространяется только на образцы, подвергнутые испытаниям

где αx – коэффициент температурного расширения в направлении оси X

Матрица [D]-1, нормализованная по столбцам, имеет вид:

	1/Ex -vyx/Ex	-νxy/Ey 1/Ey	-vxz/Ez -vyz/Ez	0	0	0 0	
[D]-1 =	-vzx/Ex	-vzy/Ey	1/Ez	0	0	0	(4)
	0	0	0	1/Gx	0	0	
	0	0	0	0	1/Gy	0	
	0	0	0	0	0	1/Gz	

При использовании нормализация по строкам, матрица записывается следующим образом:

$$[D]-1 = \begin{bmatrix} 1/Ex & -v*xy/Ey & -v*xz/Ez & 0 & 0 & 0 \\ -v*yx/Ex & 1/Ey & -v*yz/Ez & 0 & 0 & 0 \\ -v*zx/Ex & -v*zy/Ey & 1/Ez & 0 & 0 & 0 \\ 0 & 0 & 0 & 1/Gxy & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1/Gyz & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1/Gzx \end{bmatrix}$$
(5)

Для записи элементов этих матриц используются обозначения:

Ех – модуль Юнга в направлении оси X,

vxy – минимальный коэффициент Пуассона,

v*xy – максимальный коэффициент Пуассона,

Gху – модуль сдвига в плоскости X-Y.

Матрица [D]-1 должна быть положительно определенной. Кроме того, эта матрица должна быть симметричной, поэтому для ортотропных материалов предполагается существование соотношений:

$$vyx / Ex = vxy / Ey$$
 (6)
 $vzx / Ex = vxz / Ez$ (7)
 $vzy / Ey = vyz / Ez$ (8)
или
 $v*yx / Ey = v*xy / Ex$ (9)
 $v*zx / Ez = v*xz / Ex$ (10)
 $v*zy / Ez = v*yz / Ey$ (11)

Согласно приводимым выше соотношениям, величины vxy, vzy, vzx, v^*yx , v^*zy и v^*zx являются зависимыми и поэтому не задаются при вводе исходных данных.

Из равенства (2) в развернутом виде, используя выражения (3), (4), а также (6) ... (8), получаем шесть упавнений:

где єх - деформация в направлении оси X,

єху - деформация сдвига в плоскости Х-Ү,

ох - напряжения в направлении оси X,

оху - напряжения сдвига в плоскости Х-Y;

компоненты с другими индексами получаются циклическим сдвигом (X-Y-Z).

Уравнение (1) можно переписывается в развернутом виде, используя обратную матрицу (4), что вместе с уравнениями (3), (6) ... (8) дает шесть соотношений для напряжений:

$$\sigma x = Ex/h \left[1 - (vyz)2 Ey/Ez\right] (\epsilon x - \alpha x \Delta T) + Ex/h \left[vxy + vxzvyz Ey/Ez\right] (\epsilon y - \alpha y \Delta T) + Ex/h \left[vxz + vyzvxy\right] (\epsilon z - \alpha z \Delta T)$$

$$(18)$$

$$\sigma y = Ex/h \left[vxy + vxzvyz Ey/Ez\right] (\epsilon x - \alpha x \Delta T) + Ey/h \left[1 - (vxz)2 Ex/Ez\right] (\epsilon y - \alpha y \Delta T) + Ey/h \left[vyz + vxzvxy Ex/Ey\right] (\epsilon z - \alpha z \Delta T)$$
(19)

$$\sigma z = Ex/h \left[vxz + vyzvxy\right] (\varepsilon x - \alpha x \Delta T) + Ey/h \left[vyz + vxzvxy Ex/Ey\right] (\varepsilon y - \alpha y \Delta T) + Ez/h$$

$$\left[1 - (vxy)2 Ex/Ey\right] (\varepsilon z - \alpha z \Delta T)$$

$$(20)$$

$$\sigma xy = Gxy \in xy \tag{21}$$

$$\begin{aligned}
\sigma yz &= Gyz \in yz \\
\sigma xz &= Gxz \in xz,
\end{aligned} (22)$$

в которых обозначено: h = 1 - (vxy)2 Ex/Ey - (vyz)2 Ey/Ez - (vxz)2 Ex/Ez - 2 vxy vyz vxz Ex/Ez.

Если модули сдвига Gxy, Gyz, Gxz не задаются при вводе, то их значения вычисляются следующим образом:

4 РАСЧЕТ ИЗДЕЛИЯ

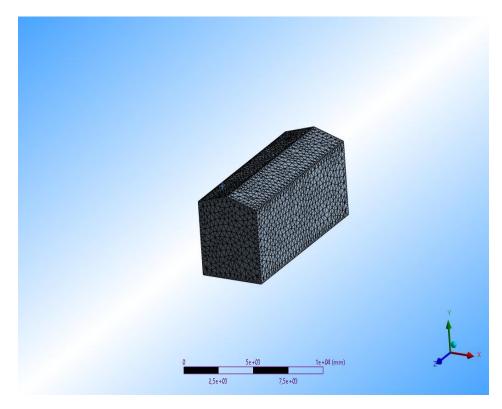


Рис. 3. Расчетная аппроксимированная модель Определение собственных частот колебаний изделия:

№ рис.	Форма колебаний	Частота, Гц
5	1	39,5
6	2	39,8
7	3	41
8	4	45,9
9	5	46,2
10	6	47,9

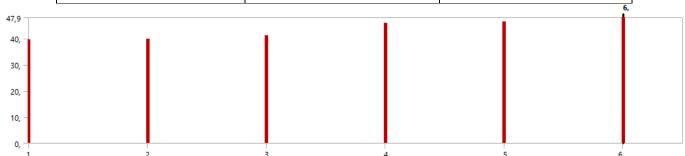


Рис. 4. Гистограмма собственных частот колебаний

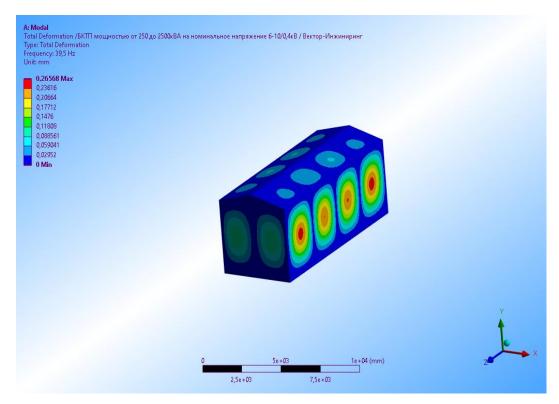


Рис. 5. Амплитуда при 1-й форме колебаний [мм]

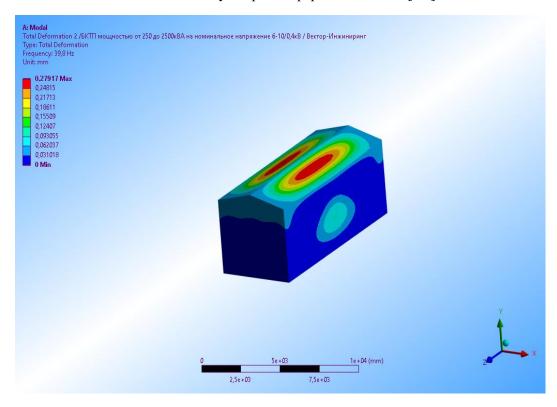


Рис. 6. Амплитуда при 2-й форме колебаний [мм]

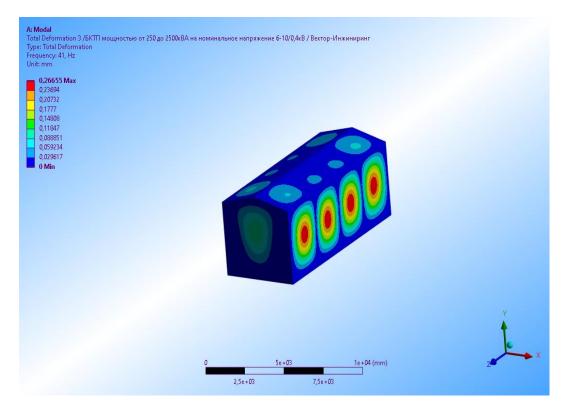


Рис. 7. Амплитуда при 3-й форме колебаний [мм]

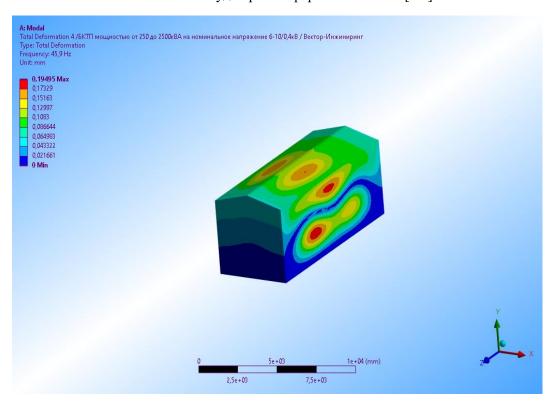


Рис. 8. Амплитуда при 4-й форме колебаний [мм]

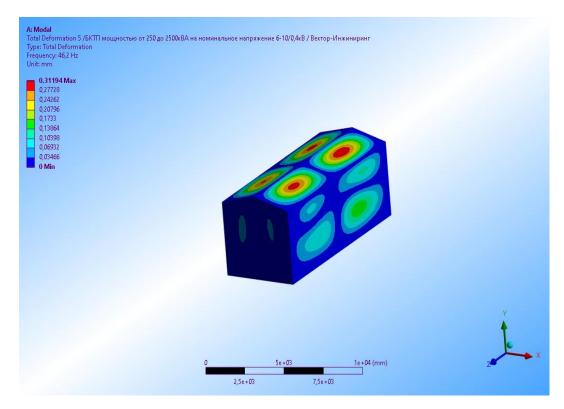


Рис. 9. Амплитуда при 5-й форме колебаний [мм]

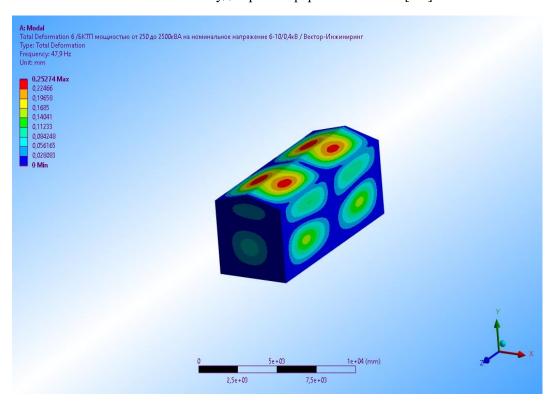


Рис. 10. Амплитуда при 6-й форме колебаний [мм]

Анализ сейсмического воздействия на изделие:

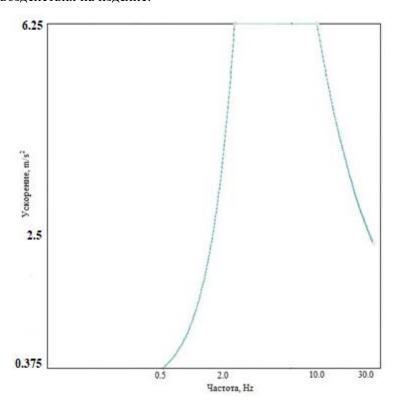


Рис. 11. График зависимости между максимальной амплитуды ускорения и частотой синусоидальной вибрации – расчетный спектр воздействия.

Значение частот и ускорений для характеристических точек по рисунку 11

Частота [Hz]	Ускорение [m/s ²]
0.5	0.375
2	6.25
10	
30	2.5

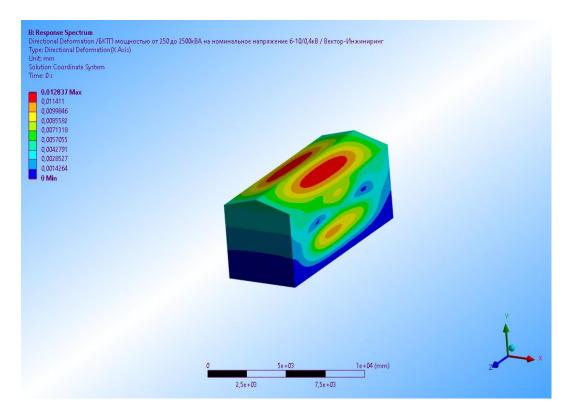


Рис. 12. Деформации по оси Х [мм]

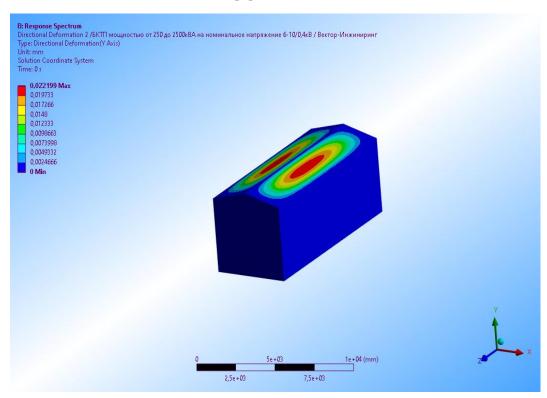


Рис. 13. Деформации по оси Ү [мм]

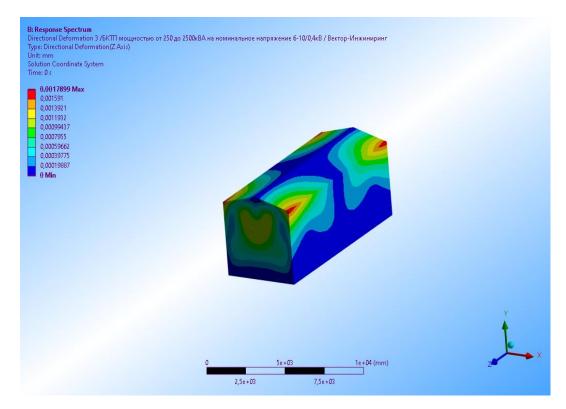


Рис. 14. Деформации по оси Z [мм]

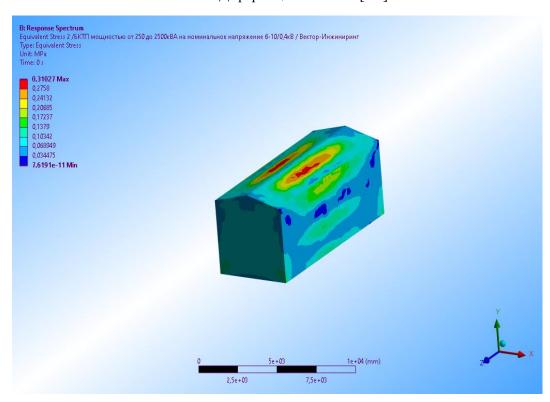


Рис. 15. Эквивалентные напряжения [МПа]

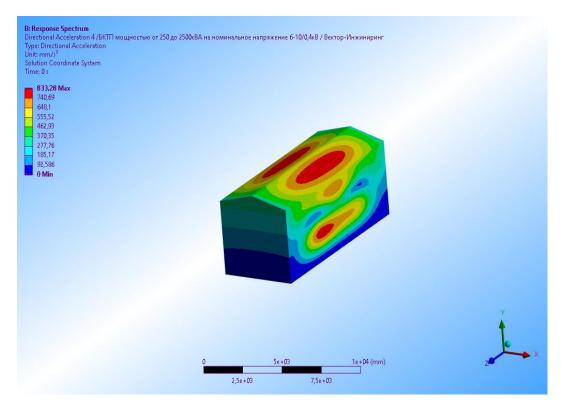


Рис. 16. Ускорения по оси $X [mm/c^2]$

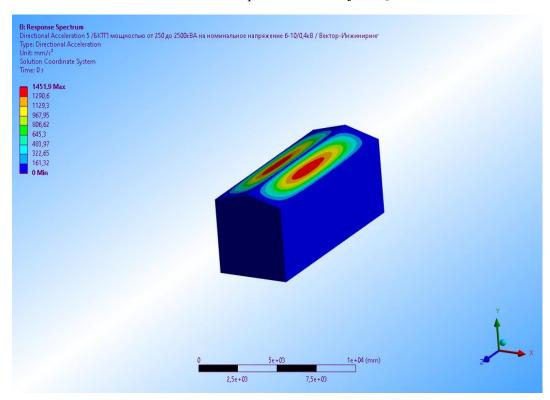


Рис. 17. Ускорения по оси $Y [mm/c^2]$

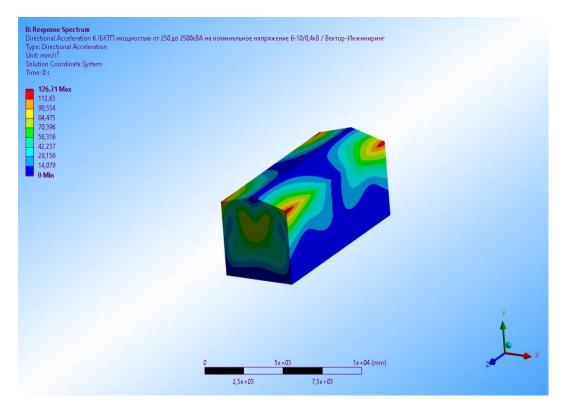


Рис. 18. Ускорения по оси Z [мм/ c^2]

Визуализация коэффициента запаса прочности:

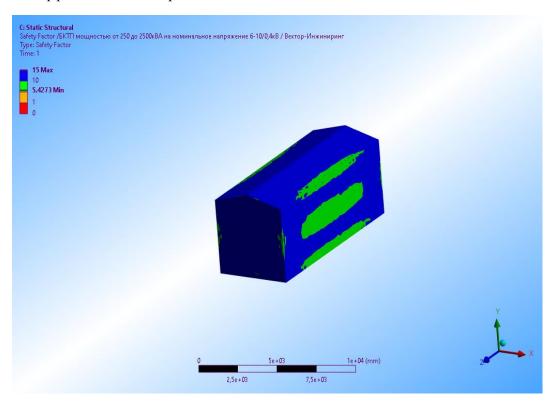


Рис. 19. Визуальный коэффициент запаса прочности

ЗАКЛЮЧЕНИЕ:

- 1. Испытание на сейсмическое воздействие выполнено расчетным методом на основании ГОСТ 30546.1-98 «Общие требования к машинам, приборам и другим техническим изделиям и методы расчета их сложных конструкций в части сейсмостойкости», ГОСТ 30546.2-98 «Испытания на сейсмостойкость машин, приборов и других технических изделий», ГОСТ 30546.3-98 «Методы определения сейсмостойкости машин, приборов и других технических изделий, установленных на месте эксплуатации, при их аттестации или сертификации на сейсмическую безопасность».
- 2. В расчете представлены собственные частоты колебаний изделия, сейсмическое воздействие, визуализация коэффициента запаса прочности;
- 3. На основании проведенного расчёта можно сделать выводы, что прочность изделия от сейсмического воздействия в 9 баллов по шкале MSK-64 на высоте 70 метров над нулевой отметкой обеспечена.

Испытания провел:		
•		
Инженер по испытаниям	- (effer	Левин А.А